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Introduction to ‘‘Contour Dynamics for the
Euler Equations in Two Dimensions’’

In fact, it turns out that these equations apply to a wideZabusky, Hughes, and Roberts [32] introduced the
range of related systems [9] and new applications continuemethod of ‘‘contour dynamics’’ to describe the motion
to be found. The essential ingredients are (1) a materiallyof vorticity contours in an inviscid two-dimensional flow.
conserved quantity g and (2) a linear ‘‘inversion’’ operatorWhen the distribution of vorticity is piecewise uniform, the
relationship between g and the ‘‘velocity’’ field u. Thecontours coincide with vorticity jumps, and the governing
first ingredient permits one to represent g as a piecewise-equations may be derived without approximation from
uniform function and to follow its evolution by simpleEuler’s equations. Alternatively, one may view contour
advection, Eq. (2). The second ingredient allows one todynamics (hereafter CD) as an approximation to the dy-
reduce the calculation of u to contour integrals, Eq. (1)namics of a flow having continuous vorticity. Such an ap-
(although there are systems, like the Vlasov system, inproximation is much better than one might expect on first
which a generalized form of Eq. (1) is required; see [9]).estimates [17] and has led to unforeseen practical uses

Examples of the diversity of CD include studies of iono-of CD.
spheric plasma clouds [22, 23], axially-stretching flows [25],Contour dynamics grew out of an earlier model, called
axisymmetric flow without swirl [24, 28], helical flow with-the ‘‘Water Bag Model,’’ introduced a decade earlier by
out swirl [10], flow on the surface of a sphere [6], andBerk and Roberts [2] in the context of the two-dimensional
multilayer quasi-geostrophic flow in a 3D, rotating, stra-Vlasov equation in plasma physics (in fact, the idea goes
tified fluid [11]. At present, in fact, it is in the arena ofeven further back to a technical report of Dory in 1962
atmospheric and oceanic dynamics where CD and its exten-[34]—see the comments in [2]—and the name ‘‘contour
sions are most widely used.dynamics’’ was coined by Harlow in 1971). Like Euler’s

The conceptual simplicity of CD has inspired numerousequations in fluid dynamics, there is a materially conserved
analytical studies, such as localized equations of the modi-field (a distribution density) in a space spanned by particle
fied-KdV type for describing wave propagation on con-position and momentum. However, the relationship be-
tours [14, 21]; semi-analytical studies, such as finding equi-tween this field and the associated rates of change of parti-
librium contour configurations and assessing their stabilitycle position and momentum is significantly more compli-
(see [31, 9, 26, 27, 12]); approximate models of vortexcated than the relationship between vorticity and velocity
behaviour, such as the moment model [19] and the ellipticalin a fluid. Zabusky et al. [32] capitalized on this fact and
model [16]; and wide-ranging attempts to prove, or dis-showed that, in CD, the velocity field u can be expressed
prove, the regularity of CD, culminating rigorously in favorsuccinctly in terms of contour integrals along the vorticity
of regularity ([3] and references therein).discontinuities Dgk with a weighting factor given by the

Of course the interest in CD lies in its potential as aGreen function G of Laplace’s operator:
computational tool. For a number of problems, CD offers
clear numerical and conceptual advantages: an effective
reduction in the dimension of the system from two to oneu(x) 5 2 O

k
Dgk R

Ck

G(x 2 Xk) dXk (1)
as well as a means for dealing with fields having sharp
gradients. These advantages can lead to greatly reduced
computational costs as well as greatly enhanced accuracywhere Xk is a point on contour Ck traversed in the right-
compared with conventional (pseudo-spectral or grid-handed sense, and Dgk is the inward jump in vorticity g.
point) numerical methods, particularly so for flows whichFor an unbounded fluid, G(x 2 Xk) 5 (2f)21 log ux 2 Xk u.
can be represented by a small number of well-behaved con-

Equation (1) expresses the fact that the contours alone
tours.

determine the velocity field everywhere. The flow evolu-
These advantages were exploited early on in the algo-

tion, therefore, can be reduced to the motion of the con-
rithms developed by Berk and Roberts [2] and Zabusky

tours, simple advection:
et al. [32], and later by Deem and Zabusky [5] (published
however a year earlier!), and by many others since [9; 1;
26, and references therein]. There are probably thousandsdXk/dt 5 u(Xk). (2)
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of researchers that now use some form of CD or an exten- see [18]). They replaced the computation of the velocity
sion thereof in their research, particularly in the atmo- field via Eq. (1) by a given velocity field on a fixed grid,
spheric and oceanic sciences. as one would have it from routine observational analyses

But a difficulty was also recognized early on—the ten- or from a ‘‘global circulation model.’’ They determined
dency for contours to develop fine scale (foreseen, remark- the (conservative) tracer evolution then by simple advec-
ably, by Kelvin in the last century; see [7] for the physical tion, Eq. (2). They called this technique ‘‘contour advec-
mechanism involved). This fine scale causes contour tion.’’ Applications to the real stratosphere have far sur-
lengths to grow rapidly, and to maintain accuracy one has passed expectations: Contour advection revealed, for the
to continually add computational points. This slows down first time, a proliferation of fine, sub-grid scale filamentary
the simulation, since the computational cost in calculating tracer structure, corroborated by high-resolution aircraft
the velocity at all points is proportional to the square of measurements (Waugh et al. [30]).
the number of points. If points are not added, contours The success of this diagnostic tool motivated Dritschel
begin to cross and the simulation accuracy degrades and Ambaum [13] to reintroduce the dynamical calculation
rapidly. of the velocity field, not by Eq. (1) as in CD, but through

Berk and Roberts [2] introduced what they called ‘‘trim- the use of an underlying grid, as in the particle-in-cell
ming’’ to slow the growth in contour complexity. This trim- algorithm for point vortices [4]. The contour advection
ming reconnected, under certain circumstances, close con- studies have confirmed that the large-scale (or super-grid
tours enclosing the same g. This permitted them to take scale) velocity field dominates in advection: sub-grid scale
their simulations to longer times, while incurring little loss fluctuations are practically negligible. Dritschel and Am-
in accuracy. Twenty years later, Dritschel [8] redeveloped baum [13] further exploited the fact that fine-scale g (‘‘po-
this idea under the name ‘‘contour surgery’’ (CS), a robust, tential vorticity’’ in atmospheric or oceanic dynamics) is
efficient method for limiting the complexity of contours practically negligible for determining the velocity field, by
(see also [9] and, more recently, [13]). Contour surgery virtue of the inversion operator. Dritschel and Ambaum
ties together the way in which contours are topologically [13] closed the circuit by introducing a novel, fast algo-
reconnected, below a prescribed scale d, with the way in rithm, linearly proportional to the number of points repre-
which points are distributed (and redistributed) along the senting the contours, for converting the g contours to grid-
contours. This is done to balance the accuracy of the vari- ded values. These gridded values are then used in a
ous parts of the numerical algorithm, and thereby minimize conventional way to calculate the gridded velocity field.
computational expense for a prescribed accuracy. That one The point is that, for all but the simplest flows, this can
can perform accurate simulations with surgery is a conse- be done much more rapidly than via Eq. (1).
quence of the general insensitivity of u to fine scale g. This hybrid algorithm, called the ‘‘Contour-Advective

An alternate way of controlling the development of fine- Semi-Lagrangian Algorithm,’’ represents a computational
scale structure was introduced by Zabusky and Overman breakthrough. It frees CD from the constraint that there
[33], but has not been fully explored. They introduced must be a linear operator relationship between g and u.
‘‘tangential regularization,’’ in which the contour curvature It marries the ideal elements of CD and conventional nu-
is diffusively damped. This limits the maximum curvature merical methods. It permits one to study much more com-
that can occur and controls contour stretching. However, plex and much more realistic flows, e.g., atmospheric and
this scheme does not permit contour reconnection, which oceanic flows having gravity waves and large-scale vorticity
may still occur, for instance, when two parts of the contour gradients, much more accurately than conventional algo-
come closer than the viscous scale. rithms for the same computational cost. Who would have

Contour dynamics has had one further extension re- thought that CD would have led to this?
cently, an extension which may prove highly practical, for
example, in changing the way weather forecasting is now

ACKNOWLEDGMENTdone. The use of CD/CS has been steadily growing in
the atmospheric and oceanic scientific communities, to the DGD is supported by the UK Natural Environment Research Council.
point where it is now used more by these communities
than by any other—certainly something which had not

REFERENCESbeen foreseen early on. There are literally hundreds of
published works using this algorithm, and there is extensive 1. G. R. Baker and M. J. Shelley, On the connection between thin
research in progress. A pivotal development was made vortex layers and vortex sheets, J. Fluid Mech. 215, 161 (1990).
simultaneously by Waugh and Plumb [29] and Norton [20], 2. H. L. Berk and K. V. Roberts, The water-bag model, Methods
who converted the CS algorithm into a diagnostic tool for Comput. Phys. 9, 87 (1967).
studying tracer advection in the atmosphere (to obtain new 3. A. Bertozzi and P. Constantin, Global regularity for vortex patches,

Comm. Math. Phys. 152, 19 (1993).insight into the mechanisms leading to ozone depletion,



INTRODUCTION 219

4. J. P. Christiansen, Numerical simulation of hydrodynamics by the nosed by a vortex-following coordinate system and a technique for
advecting material contours, J. Atmos. Sci. 51, 654 (1994).method of point vortices, J. Comput. Phys. 13, 363 (1973).

21. J. Nycander, D. G. Dritschel, and G. G. Sutyrin, The dynamics of5. G. S. Deem and N. J. Zabusky, Vortex waves: Stationary V-states,
long frontal waves in the shallow water equations, Phys. Fluids Ainteractions, recurrence, and breaking, Phys. Rev. Lett. 40, 859 (1978)
5(5), 1089 (1993).[See also, Stationary V-states, interactions, recurrence, and breaking,

in Solitons in Action, edited by K. Lonngren and A. Scott (Academic 22. E. A. Overman II and N. J. Zabusky, Stability and nonlinear evolution
Press, New York, 1978), p. 277]. of plasma clouds via regularized contour dynamics, Phys. Rev. Lett.

45, 1693 (1980).6. D. G. Dritschel, Contour dynamics/surgery on the sphere, J. Comput.
Phys. 78, 477 (1988). 23. E. A. Overman II, N. J. Zabusky, and S. L. Ossakow, Ionospheric

plasma cloud dynamics via regularized contour dynamics. I. Stability7. D. G. Dritschel, The repeated filamentation of two-dimensional vor-
and nonlinear evolution of one-contour models, Phys. Fluids 26,ticity interfaces, J. Fluid Mech. 194, 511 (1988).
1139 (1983).8. D. G. Dritschel, Contour surgery: A topological reconnection scheme

24. C. Pozrikidis, The nonlinear instability of Hill’s vortex, J. Fluid Mech.for extended integrations using contour dynamics, J. Comput. Phys.
168, 337 (1986).77, 240 (1988).

25. D. I. Pullin and P. A. Jacobs, Inviscid evolution of stretched vortex9. D. G. Dritschel, Contour dynamics and contour surgery: Numerical
arrays, J. Fluid Mech. 171, 377 (1986).algorithms for extended, high-resolution modelling of vortex dynam-

26. D. I. Pullin, Contour dynamics methods, Ann. Rev. Fluid Mech. 24,ics in two-dimensional, inviscid, incompressible flows, Comput. Phys.
89 (1992).Rep. 10, 77 (1989).

27. P. G. Saffman, Vortex Dynamics (Cambridge Univ. Press, Cam-10. D. G. Dritschel, Generalized helical Beltrami flows in hydrodynamics
bridge, 1992).and magnetohydronamics, J. Fluid Mech. 222, 525 (1990).

28. K. Shariff and A. Leonard, Vortex rings, Ann. Rev. Fluid Mech. 24,11. D. G. Dritschel and R. Saravanan, Three-dimensional quasi-
235 (1992).geostrophic contour dynamics, with an application to stratospheric

29. D. W. Waugh and R. A. Plumb, Contour advection with surgery:vortex dynamics, Q. J. Roy. Met. Soc. 120, 1267 (1994).
A technique for investigating finescale structure in tracer transport,12. D. G. Dritschel, A general theory for two-dimensional vortex interac-
J. Atmos. Sci. 51, 530 (1994).tions, J. Fluid Mech. 293, 269 (1995).

30. D. W. Waugh, R. A. Plumb, R. J. Atkinson, M. R. Schoeberl, L. R.13. D. G. Dritschel and M. H. P. Ambaum, A contour-advective semi-
Lait, P. A. Newman, M. Loewenstein, D. W. Toohey, L. M. Avallone,Lagrangian algorithm for the simulation of fine-scale conservative
C. R. Webster, and R. D. May, Transport of material out of thefields, Q. J. Roy. Meteorol. Soc. 123, 1097 (1997).
stratospheric Arctic vortex by Rossby wave breaking, J. Geophys.

14. R. E. Goldstein and D. M. Petrich, The Kortweg–de Vries hierarchy Res. 99, 1071 (1994).
as dynamics of closed curves in the plane, Phys. Rev. Lett. 67,

31. H. M. Wu, E. A. Overman II, and N. J. Zabusky, Rotating and3203 (1991).
translating V-states with limiting cases. I. Numerical results, J.

15. F. H. Harlow, Contour dynamics for numerical fluid-flow calculations, Comput. Phys. 53, 42 (1984).
J. Comput. Phys. 8, 214 (1971).

32. N. J. Zabusky, M. H. Hughes, and K. V. Roberts, Contour dynamics
16. B. Legras and D. G. Dritschel, The elliptical model of two-dimen- for the Euler equations in two dimensions, J. Comp. Phys. 30, 96

sional vortex dynamics. I. The basic state, Phys. Fluids A 3, 845 (1991). (1979).
17. B. Legras and D. G. Dritschel, A comparison of the contour surgery 33. N. J. Zabusky and E. A. Overman II, Regularization of contour

and pseudo-spectral methods, J. Comput. Phys. 104, 287 (1993). dynamical algorithms. I. Tangential regularization, J. Comput. Phys.
52, 351 (1983).18. M. E. McIntyre, The stratospheric polar vortex and sub-vortex: Fluid

dynamics and midlatitude ozone loss, Philos. Trans. R. Soc. London 34. R. A. Dory, Midwestern Univ. Res. Assoc. Rept. 654 (1962).
352, 227 (1995).

David G. Dritschel19. M. V. Melander, N. J. Zabusky, and A. S. Styczek, A moment model
for vortex interactions of the two-dimensional Euler equations. I. Department of Applied Mathematics
Computational validation of a Hamiltonian elliptical representation, and Theoretical Physics
J. Fluid Mech. 167, 95 (1986). University of Cambridge

20. W. A. Norton, Breaking Rossby waves in a model stratosphere diag- Cambridge CB3 9EW, United Kingdom


